Final exam
Electronics \& Signal processing 06-04-2016

Prof. Dr. G. Palasantzas

Grade of written exam:
Mark is cummulative points scored for all problems
Total maximum score : 10

Problem 1 (1.5 points)

Derive the Thévenin equivalent between points A and B by calculating the Thévenin potential $\mathbf{V}_{\mathbf{t h}}$ (1 point) and the Thévenin resistance $\mathbf{R}_{\mathbf{T H}}$ (0.5 points) using only the Thevenin-Norton concepts to analyze the circuit.

Solution Problem 1
Transform first io have only voltage sourced

$$
\begin{aligned}
& V_{S}=V-I\left(R_{1} \| R_{2}\right) \\
& R_{S}=R_{3}+R_{1} \| R_{2}
\end{aligned}
$$

$=P$

$$
\begin{aligned}
& V_{\text {TH }}=\left[V-I\left(R_{1} \| R_{2}\right)\right] \frac{R_{4}}{R_{3}+R_{4}+\left(R_{1} \| R_{2}\right)} \\
& R_{T H}=R_{5}\left\|R_{4}=\left(R_{3}+R_{1} \| R_{2}\right)\right\| R_{4} \text { (o. spoint) }
\end{aligned}
$$

Problem 2 (2.5 points)

Consider the circuit below with two ideal op amps ($\mathbf{V}+=\mathbf{V}$-)

(a: 0.5 points) Show that: $\frac{V(6)}{V(3)}=-\frac{1}{j \omega \tau_{3}}$
where $\tau_{3}=\mathrm{R}_{3} \mathrm{C}_{3}$.
(b: $\mathbf{1 . 5}$ points) Show that
where $\tau_{1}=\mathrm{R}_{1} \mathrm{C}_{1}$.

$$
V(2)=\frac{\left(\frac{R_{1}}{R_{2}}+j \omega \tau_{1}\right) V(3)+V(1)}{1+\frac{R_{1}}{R_{2}}+j \omega \tau_{1}}
$$

(c: 0.5 points) Show that $V(3)=V(4)=\frac{V(2)}{1+j \omega \tau_{2}}$
where $\tau_{2}=\mathrm{R}_{2} \mathrm{C}_{2}$.

Solution Problem 2
(a)
a) $\frac{V\left(V_{1}\right)}{R_{3}}+\frac{V(6)}{j^{1} C_{3}}=0$

$$
\frac{V(6)}{V(3)}=-\frac{1}{j \omega R_{3} C_{3}}=-\frac{1}{j \omega \tau_{3}}
$$

(b)

$$
\begin{aligned}
& V(2)=\frac{\frac{1}{j \omega C_{1}} / / R_{2}}{R_{1}+\frac{1}{j \omega C_{1}} / / R_{2}} V(1)+\frac{R_{1}}{R_{1}+\frac{1}{j \omega C_{1}} / / R_{2}} V(3)(1 \text { point }) \\
& \frac{1}{\delta \omega C_{1}} / / R_{2}=\frac{\frac{R_{2}}{\delta \omega C_{1}}}{R_{2}+\frac{1}{j \omega C_{1}}}=\frac{R_{2}}{1+j \omega R_{2} C_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& V(1): \frac{R_{2}}{R_{1}+R_{2}+j \omega R_{2} R_{1} C_{1}} V(1)+\frac{R_{1}+j \omega R_{2} R_{1} C_{1}}{R_{1}+R_{2}+j \sim R_{2} R_{1} C_{1}} V(3) \\
& V(2)=\frac{1 V(1)}{1+\frac{R_{1}}{R_{2}}+j w I_{1}}+\frac{\frac{R_{1}}{R_{2}}+j w \tau_{1}}{1+\frac{R_{1}}{R_{2}}+j w I_{1}} V(3) \\
& V(2)=\frac{\left(\frac{R_{1}}{R_{2}}+j \omega \tau_{1}\right) V(3)+V(1)}{1+\frac{R_{1}}{R_{2}}+j w \tau_{1}} \quad \text { (0.5 points) }
\end{aligned}
$$

c)

$$
\begin{aligned}
& V(4)=\frac{\frac{1}{j \omega C_{2}}}{R_{2}+\frac{1}{\sqrt{\omega} C_{2}}} V(2)=\frac{1}{1+\gamma \omega R_{2} C_{2}} V(2) \\
& \therefore V(3)=V(4)=\frac{1}{1+j^{\omega} L_{2}} \quad V_{2}
\end{aligned}
$$

Problem 3 (1 point)

The Nyquist diagrams below represent four circuits (0.25 points per circuit). In each case determine:

- the number of low and high-frequency cut-offs
- whether or not the circuit is stable.

(a)

(c)

(b)

(d)
ia) I high cut off 1 Row cut-off stable
b) 3 high cut-off's stable
c) 3 high cut-offs

2 I low cut-off unstable
d) ' high cut-off 3 low cut-offs stable

Problem 4 (1.5 points)

The diodes C_{1} and C_{2} are assumed ideal with forward conduction voltage $\mathrm{Vc} \ll \operatorname{Vin}(>0)$. The Diode C 2 is also a Zener diode with reverse conduction voltage $\mathrm{Vz}(\ll \mathrm{Vin})$.

Calculate the current through the resistor R2 and discuss possible restrictions for the resistor ratio $\mathrm{R} 1 / \mathrm{R} 2$ depending on the operation of C 1 and C 2 .

Solution Problem 4

Vin>>Vc \rightarrow Diode C 1 conducts

C 2 can conduct only as Zener

15 we ignore zener C_{2} then the potential at point "O" is

$$
\begin{align*}
& V_{0}=V_{\text {in }}-V_{c}-I R_{1} \tag{i}\\
& I=\frac{V_{\text {in }}-V_{c}}{R_{1}+R_{2}} \tag{2}
\end{align*}
$$

(L) $f(r)$ give $V_{0}=\left(V_{\text {in }}-V_{c}\right) \frac{R_{2}}{R_{1}+R_{2}}$
(I) If $V_{0}<V_{z}$ the diode C_{2} is not conducting as cozener $\Rightarrow \quad I_{2}=I=\frac{V_{\text {in }}-V_{c}}{R_{1}+R_{2}}$
(0.5 points)
(4)
(II) If $V_{0} \geqslant V z$ then the zener is conducting and the potential at point 0 is $V_{2}=P$

$$
\begin{aligned}
& I_{2}=\frac{V_{2}}{R_{2}} \text { (5) (0.5 points) } \\
& \text { since } V_{0} \geqslant V_{2} \Rightarrow\left(V_{\text {in }}-V_{c}\right) \frac{R_{2}}{R_{1}+R_{2}} \geqslant V_{2} \Rightarrow
\end{aligned}
$$

$$
\frac{R_{1}}{R_{2}}+1 \leq \frac{V_{\text {in }}-V_{c}}{V_{2}} \Rightarrow \frac{R_{1}}{R_{2}} \leqslant \frac{V_{\text {in }}-V_{c}}{V_{2}}-1
$$

Restriction for R_{1} / R_{2} If (6) is not valid then the zener is not conducting!

Problem 5 (2 points)

(a: 1 point) Using the output table given below, design the synchronous 8 -counter $0 \rightarrow 7$ (X : do not care) using $3 \mathrm{~J}-\mathrm{K}$ flip-flops:

Output State Transitions		Flip-flop inputs		
Present State Q2 Q1 Q0	Next State Q2 Q1 Q0	J2 K2	J1 K1	J0 K0
000	001	0 X	0 X	1 X
001	010	0 X	1 X	X 1
010	011	0 X	X 0	1 X
011	100	1 X	X 1	X 1
100	101	X 0	0 X	1 X
101	110	X 0	1 X	X 1
110	111	X 0	X 0	1 X
111	000	X 1	X 1	X 1

(b: 1 point) Using the result from (a) identify J-K flip-flops acting as internal clocks in order to design a simpler version of the synchronous 8 -counter $0 \rightarrow 7$ (asynchronous)

Output State Transitions		Flip-flop inputs		
Present State Q2 Q1 Q0	Next State Q2 Q1 Q0	J2 K2	J1 K1	J0 K0
000	001	0 X	0 X	1 X
001	010	0 X	1 X	X 1
010	011	0 X	X 0	1 X
011	100	1 X	X 1	X 1
100	101	X 0	0 X	1 X
101	110	X 0	1 X	X 1
110	111	X 0	X 0	1 X
111	000	X 1	X 1	X 1

Solution Problem 5

The K-maps for J-Ks are:

020	0	1
00	0	0
01	0	1
11	X	X
10	X	X

	0	1
00	0	1
01	X	X
11	X	X
10	0	1
	J1	

$0201)^{00} 0 \quad 1$		
00	1	X
01	1	X
11	1	X
10	1	X
J0 map		

From the K-maps we obtain after crouping: $\rightarrow\left\{\begin{array}{l}\mathbf{J} \mathbf{0}=\mathbf{K} \mathbf{0}=\mathbf{1} \\ \mathbf{J} 1=\mathbf{K} 1=\mathbf{Q} \mathbf{0} \\ \mathbf{J} \mathbf{2}=\mathbf{K} \mathbf{2}=\mathbf{Q} 1 * \mathbf{Q} \mathbf{0}\end{array}\right.$

Output State Transitions		Flip-flop inputs		
Present State Q2 Q1 Q0	Next State Q2 Q1 Q0	J2 K2	J1 K1	J0 K0
000	01	0 X	\x	1 X
001	10	0 X	1 x	X 1
010	11	0 X	XX	1 X
$0 \triangle 1$	00	1 X	X1	X 1
100	01	X 0	WX	1 X
101	10	X 0	1 X	X 1
110	11	X 0	X X	1 X
111	00	X 1	X 1	X 1

(0.5 points)

Q0 clock for Q1 (Q1 changes only when Q0 has negative drop \rightarrow Extra do not cares \mathbf{X} for J1 and $\mathrm{K} 1 \Rightarrow \mathbf{J} \mathbf{1}=\mathbf{K} 1=\mathbf{1}$

Output State Transitions		Flip-flop inputs		
Present State Q2 Q1 Q0	Next State Q2 Q1 Q0	J2 K2	J1 K1	J0 K0
000		0 X	0 X	1 X
001	0 0	0 X	1 X	X 1
010	$0 \quad 1$	WX	X 0	1 X
011	10	1 X	X 1	X 1
100	11	X X	0 X	1 X
101	10	X 0	1 X	X 1
110		X 8	X 0	1 X
111	0	X 1	X 1	X 1

(0.5 points)

Q0 clock for Q2 \rightarrow
Extra do not cares \mathbf{X} as indicated. If we derive the K-maps then we obtain $1 \Rightarrow \mathbf{J} \mathbf{2}=\mathbf{K} 2=\mathbf{Q} 1$
$\mathrm{J} 0=\mathrm{K} 0=1, \mathrm{~J} 1=\mathrm{K} 1=1, \mathrm{~J} 2=\mathrm{K} 2=\mathrm{Q} 1$

You can also consider Q 1 clock for Q 2 and then: $\mathrm{J} 1=\mathrm{K} 1=\mathrm{J} 2=\mathrm{K} 2=\mathrm{J} 0=\mathrm{K} 0=1$

Problem 6 (1.5 points)

Consider a FET amplifer as it is shown bellow:

Show that the amplification ratio of the input/output potential variations vo/vi is given by:

$$
\frac{v_{o}}{v_{i}}=\frac{g_{m} R_{s}}{1+g_{m} R_{S}+\left[\left(R_{D}+R_{S}\right) / r_{d}\right]}
$$

with g_{m} the transconductance and r_{d} the differential resistance of the FET operating at saturation.

I use differential analysis. [you can obs use small signet circuit

$$
\begin{align*}
\text { (1) } V_{0} & =I_{D} \cdot R S, \quad U_{S} \equiv U_{0} \quad \tilde{I}_{D} \equiv U_{i} \\
\text { (2) } \tilde{V}_{0} & =\tilde{I}_{D} R_{S}, g_{m}+\frac{U_{d}-U_{S}}{r_{d}} \\
U_{S} & =\widetilde{V}_{0}-V_{0}\left(\equiv U_{0}\right) \text { change of FFT current becauscor Oi } \\
\text { (2) }-(1) & \Rightarrow \quad U_{S}=R_{S}\left[g_{m} U_{g S}+\frac{\left.U_{d}-U_{S}\right](3)}{V_{d}}\right] \\
\text { (4) } I_{D} & =\frac{V_{S}}{R_{S}}=\frac{V_{D D}-V_{D}}{R_{D}} \quad, \quad \tilde{I}_{D}=\frac{\widetilde{V_{S}}}{R S}=\frac{V_{D D}-\widetilde{V_{D}}}{R D} \text { (5) } \tag{5}
\end{align*}
$$

$$
(5)-(4)=\square \quad \frac{U_{S}}{R_{S}}=-\frac{U_{d}}{R_{D}}
$$

$$
(6)=\square \quad U_{d}=-\frac{R_{D}}{R_{S}} U_{S} \text { and substitute in (3) }
$$

$$
\begin{aligned}
& (6)=P \\
& U_{s}=g_{m} R_{S}\left(U_{g}-U_{s}\right)-R_{S} \frac{1+\frac{R_{D}}{R_{S}}}{r_{d}} U_{S} \\
& U_{s}=g_{m} R_{S} U_{g}-g_{m} R_{S} U_{s}-\frac{R_{S}+R_{D}}{r_{d}} U_{S}=P \\
& U_{s}\left[1+g_{m} R_{s}+\frac{R_{S}+R_{D}}{r_{d}}\right]=g_{m} R_{S} U_{g} \\
& U_{1}=U_{g}
\end{aligned}
$$

$$
\underline{U_{s} \equiv U_{0}, \quad U_{i} \equiv U_{g}}
$$

$$
\frac{U_{0}}{U_{i}}=\frac{g_{m} R_{s}}{1+g_{m} R_{s}+\frac{R_{D}+R_{s}}{\sqrt{d}}}
$$

Second method: Solution for normal cookies!

Small signal circuit

$$
\begin{aligned}
& \text { (1) } U_{0}=U_{s}=i d R_{S}, \quad i_{b}=g_{m} U_{g}+\frac{U_{d}-U_{S}}{r_{d}} \\
& i_{b}=-\frac{U_{d}}{R_{D}}=\frac{U_{s}}{R_{S}}={ }^{2} \quad U_{d}=-\frac{R_{D}}{R_{S}} U_{S}(3)
\end{aligned}
$$

$$
(1) f(2) \gamma(3)=\phi
$$

$$
\begin{aligned}
& s(3)=\phi \\
& U_{s}=R_{s}\left[g_{m} U_{g}-g_{m} U_{s}-\frac{1+\frac{R_{p}}{R_{s}} U_{s}}{R_{d}}\right]
\end{aligned}
$$

$$
=U_{s}\left[1+g_{m} R_{s}+\frac{R D+R_{s}}{r_{d}}\right]=g_{m} R_{s} U_{g}
$$

$$
U_{s} \equiv U_{0}, \quad U_{i}=U_{0}
$$

So we obtain

$$
\frac{U_{0}}{U_{i}}=\frac{g_{m} R S}{1+R_{s} g_{m}+\frac{R_{D}+R_{s}}{r_{d}}}
$$

