

Problem 1 (1.5 points)

Derive the Thévenin equivalent between points A and B by calculating the Thévenin potential Vтн (1 point) and the Thévenin resistance **R**тн (0.5 points) using <u>only the Thevenin-Norton</u> concepts to analyze the circuit.

Transform firsto have only voltage sources $R_{1}\xi$ $V_{I}=I(R,IIR_{2})$ RIIR2 RillRz = RIRZ (Resisters in parollel) TIT ₽ $V_{S} = V - I(R_1 || R_2)$ OA $R_{S} = R_{3} + R_{1} || R_{2}$ SRY OB ATT L $-\alpha A$ $V_{TH} = V_S \frac{R_4}{R_{S+}R_4} = P$ RTH $\sigma B = \sqrt{1} = \left(\sqrt{1} \left(\frac{R_1}{R_2} \right) \right) - \frac{R_4}{R_5 + R_4}$ VTH P $V_{TH} = \left[V - \mathbf{I}(R_1 \parallel R_2)\right] \frac{R_4}{R_3 + R_4 + (R_1 \parallel R_2)} (1 \text{ point})$ RTH = RS/IRy = (R3+R1/1R2) // Ry (0.5 points)

Problem 2 (2.5 points)

Consider the circuit below with two ideal op amps ($V_{+}=V_{-}$)

(a: 0.5 points) Show that : $\frac{V(6)}{V(3)} = -\frac{1}{j\omega\tau_3}$

where $\tau_3 = R_3 C_3$.

(b: 1.5 points) Show that where $\tau_1 = R_1C_1$. $V(2) = \frac{\left(\frac{R_1}{R_2} + j\omega\tau_1\right)V(3) + V(1)}{1 + \frac{R_1}{R_2} + j\omega\tau_1}$

(c: 0.5 points) Show that $V(3) = V(4) = \frac{V(2)}{1 + j\omega\tau_2}$ where $\tau_2 = R_2C_2$.

Ć, ----- Yo) ____ R3 **(a)** a) 1/21 + R3 V(6) =0 juics V(5) $\frac{V(6)}{V(3)} = \frac{1}{\mathcal{L} W R_3 C_3}$ ju Z3 V(3) **(b)** Vω VII) Y(3) Ζ. c_i $V(2) = \frac{1}{1 + \frac{1$ R, $\sqrt{(3)(1 \text{ point})}$ Rit (WC, //R~ Rz = <u>{</u>wcr 1 //R2 ____R__ # 1+ j'WRLC, R2 +

$$\frac{R_{1} + \frac{1}{||W_{1}|^{2}} - \frac{R_{1} + \frac{R_{2}}{||H_{1}|^{2}} - \frac{R_{1} + R_{2}}{||H_{1}|^{2}} + \frac{1}{||H_{1}|^{2}} + \frac{1}{||H_{1}|$$

Problem 3 (1 point)

The Nyquist diagrams below represent four circuits (0.25 points per circuit). In each case determine:

- the number of low and high-frequency cut-offs
- whether or not the circuit is stable.

ia) I high cut-off I Row cut-off stable b) 3 high cut-offs stable c) 3 high cut-offs 1 low cut-off anstable c) , high cut-off 3 las cut-offs stable

Problem 4 (1.5 points)

The diodes C1 and C2 are assumed ideal with forward conduction voltage Vc \ll Vin (>0). The Diode C2 is also a Zener diode with reverse conduction voltage Vz (\ll Vin).

Calculate the current through the resistor R_2 and discuss possible restrictions for the resistor ratio R_1/R_2 depending on the operation of C1 and C2.

(I) If Vo≥Vz then the zener is conducting and the potential at point o is Vz = P

$$I_{2} = \frac{Vz}{Rz}$$
 (5) (0.5 points)
Since $V_{0} \gg Vz = P$ ($Vin - Vc$) $\frac{Rz}{R_{1} + Rz} \gg Vz^{=>}$ (0.5 points)

$$\frac{R_1}{R_2} + 1 \leq \frac{V_{in} - V_c}{V_z} = P$$

$$= P \qquad \boxed{\frac{R_1}{R_2}} \leq \frac{V_{in} - V_c}{V_z} = 1 \qquad (6)$$

Restriction for R1/R2 18 (6) is not valid then the zener is not conducting! Problem 5 (2 points)

(a: 1 point) Using the output table given below, design the synchronous 8-counter $0 \rightarrow 7$ (X: do not care) using 3 J-K flip-flops:

Output State Transitions		Flip-flop inputs		
Present State Q2 Q1 Q0	Next State Q2 Q1 Q0	J2 K2	J1 K1	J0 K0
0 0 0	0 0 1	0 X	0 X	1 X
001	0 1 0	0 X	1 X	X 1
010	0 1 1	0 X	X 0	1 X
0 1 1	1 0 0	1 X	X 1	X 1
100	1 0 1	X 0	0 X	1 X
101	1 1 0	X 0	1 X	X 1
1 1 0	1 1 1	X 0	X 0	1 X
1 1 1	0 0 0	X 1	X 1	X 1

(b: 1 point) Using the result from (a) identify J-K flip-flops acting as internal clocks in order to design a simpler version of the synchronous 8-counter $0 \rightarrow 7$ (asynchronous)

QO 0

1

(a)

(b)

Output State Transitions		Flip-flop inputs		
Present State Q2 Q1 Q0	Next State Q2 Q1 Q0	J2 K2	J1 K1	J0 K0
0 0 0	0 1	0 X	XX	1 X
0 0 1	10	0 X	1 X	X 1
0 1 0	1 1	0 X	X 🔀	1 X
0 1 1	0 0	1 X	X1	X 1
1 0 0	0 1	X 0	ŶХ	1 X
1 0 1	10	X 0	1X	X 1
1 1 0	1 1	X 0	XŶ	1 X
1 1 1	0 0	X 1	X1	X 1

(0.5 points)

Q0 clock for Q1 (Q1 changes only when Q0 has negative drop \rightarrow Extra do not cares X for J1 and K1 \Rightarrow J1=K1=1

Output State Transitions		Flip-flop inputs		
Present State Q2 Q1 Q0	Next State Q2 Q1 Q0	J2 K2	J1 K1	J0 K0
0 0 0	0 1	ŶX	0 X	1 X
0 0 1	0 0	0 X	1 X	X 1
0 1 0	0 1	X	X 0	1 X
0 1 1	1 0	1X	X 1	X 1
100	1 1	XX	0 X	1 X
1 0 1	1 0	X 0	1 X	X 1
1 1 0	1 1	XX	X 0	1 X
1 1 1	0 0	X1	X 1	X 1

(0.5 points)

Q0 clock for Q2 \rightarrow Extra do not cares X as indicated. If we derive the K-maps then we obtain 1 \Rightarrow J2=K2=Q1

J0=K0=1, J1=K1=1, J2=K2=Q1

You can also consider Q1 clock for Q2 and then: J1=K1=J2=K2=J0=K0=1 ¹⁴

Problem 6 (1.5 points)

Consider a FET amplifer as it is shown bellow:

Show that the amplification ratio of the input/output potential variations uo/ui is given by:

$$\frac{v_o}{v_i} = \frac{g_m R_s}{1 + g_m R_s + [(R_D + R_S) / r_d]}$$

with g_m the transconductance and r_d the differential resistance of the FET operating at saturation.

First method: Solution for tough cookies!

I use differential analysis. Eyou can abouse shall signat circuit (i) $V_o = I_D \cdot RS$, $U_S \equiv U_o$ $U_g \equiv U_i$ (2) $\widetilde{V}_{0} = \widetilde{I}_{D} RS$, $\widetilde{I}_{D} = I_{D} + g_{m}U_{gS} + \frac{U_{d}-U_{S}}{V_{d}}$ $U_{S} = \widetilde{V}_{0} - V_{0} (\equiv U_{0})$ change of FFT current because of U: $(a) - (a) = b \quad U_S = R_S \left[g_m \ U_{gS} + \frac{U_d - U_S}{V_a} \right] (3)$ (4) $I_D = \frac{V_S}{R_S} = \frac{V_{DD} - V_D}{R_D}$, $\widetilde{I_D} = \frac{\widetilde{V_S}}{R_S} = \frac{V_{DD} - \widetilde{V_D}}{R_D}$ (5) (5) - (4) = P $\frac{U_{5}}{R_{5}} = -\frac{U_{d}}{R_{D}}(6)$ (6)=P Ud = - RD US and substitute in (3) $U_s = g_m R_s (U_g - U_s) = R_s - \frac{1 + \frac{R_0}{R_s}}{V_s} U_s$ $U_s = g_m R_s U_g - g_m R_s U_s - \frac{R_s + R_D}{V_a} U_s = P$ $Us[1+g_mRs+\frac{Rs+RD}{Va}] = g_mRs Ug$ $U_s \equiv U_0$, $U_i \equiv U_g$ $\frac{V_{o}}{110} = \frac{g_{m} \kappa s}{1 + g_{m} R s + \frac{R p + R s}{100}}$

Second method: Solution for normal cookies!

Small Signal circuit

$$\frac{1}{1} \frac{1}{1} \frac{1}{$$

17